ASTM C143

Standard Test Method for Slump of Hydraulic-Cement Concrete

Understanding ASTM International Test Procedures for Cement and Concrete - Staying Up to Standard

> Anthony F. Bentivegna, Ph.D. April 27-28, 2015

Acknowledgments

Slides Adapted from ASTM International

Outline

- Scope
- Summary of Test Method
- Significance and Use
- Identify Necessary Equipment
- Procedure
- Understand Limitations of Procedure
- Report

Related Procedures

- ASTM C31 Practice for Making and Curing Concrete Test Specimens in the Field
- ASTM C138 Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete
- ASTM C172 Practice for Sampling Freshly Mixed Concrete
- ASTM C173 Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method
- ASTM C231 Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
- ASTM C670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction Materials
- ASTM D638 Test Method for Tensile Properties of Plastics

Scope

- This test method addresses the procedures for determining the <u>slump</u> of <u>hydraulic-cement</u> <u>concrete</u>.
- The slump test can be conducted both in the <u>field</u> and <u>laboratory</u>.

www.CTLGroup.com

Summary of Test Method

- A sample of concrete is placed in a mold and <u>consolidated</u>.
- The mold is then <u>raised vertically</u> and the concrete is allowed to <u>settle</u>.
- Slump is the <u>vertical distance</u> between the original and <u>displaced center</u> of the concrete surface.

Significance and Use

This test is considered applicable to concrete having coarse aggregate <u>up to 37.5 mm</u> in size.

Significance and Use

- When the aggregate is larger than 37.5 mm,
 - wet sieve the concrete over a 37.5 mm sieve
 - test the sieved material

Note that the standard does not state whether the aggregate size is an absolute maximum or nominal maximum.

Significance and Use

- This test is NOT applicable to non-plastic, non-cohesive concrete.
 - non -plastic concrete is defined as having a slump less than 15 mm
 - non-cohesive concrete is defined as having a slump greater than about 230 mm

Significance and Use: Note 1

- The slump test was originally devised to provide a method to <u>monitor</u> the <u>consistency</u> of <u>unhardened concrete</u>.
- Under field conditions a relationship between <u>slump</u> and <u>strength</u> <u>cannot</u> be clearly and consistently shown.

Apparatus

- Mold
- Tamping Rod
- Measuring Device
- Scoop

Apparatus: Mold

- Shall be in the shape of the frustum of a cone.
 - 100 mm wide top, 200 mm wide base, 300 mm height
- Dimensions shall be checked and recorded,
 - when purchased or first used
 - at least annually
- Shall have foot fins and handles.

Apparatus: Alternate Material Molds

- Non-metal molds are permissible if they,
 - meet the shape and dimensional requirements of metal molds
 - are rigid, dimensionally stable, resistant to impact, and non-absorbent
 - · provide results comparable to metal molds
- Initial comparability tests are the responsibility of the manufacturer.

Apparatus: Alternate Material Molds

- If the condition of a mold is suspected of being out of tolerance from the as manufactured condition,
 - perform a single comparative test with a metal mold
 - the difference in measured slump between the metal and alternate material mold may not be more than 15 mm
 - molds that fail the test shall be removed from service

Apparatus: Tamping Rod

- Round, smooth, straight, steel.
- ▶ 16 mm diameter.
- Tamping end, or both ends, shall be rounded to a hemispherical tip.

Apparatus: Tamping Rod

- The length shall be at least 100 mm greater than the depth of the mold, but not greater than 600 mm.
 - a length of 400 to 600 mm meets these requirements

Apparatus: Measuring Device

- Ruler, roll-up tape, or similar device.
- Rigid or semi-rigid.
- Marked with increments of 5 mm or smaller.
- Minimum length of 300 mm.

Apparatus: Scoop

- Shall have a size,
 - large enough so the material taken from the sampling receptacle is representative
 - small enough so concrete is not spilled during placement of material in the mold

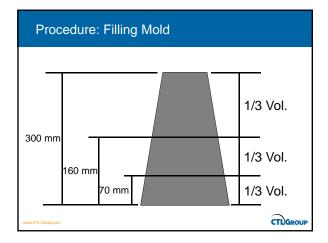
Procedure: Sample

 Obtain a representative sample of concrete according to ASTM Practice C 172.

Procedure: Dampen Mold

 Dampen the mold and place on a rigid, flat, level, moist, and non-absorbent surface that is free of vibration.

Procedure: Secure Base


- Stand on the two foot fins while filling the mold and cleaning the perimeter.
 - clamping the mold to a base is also permitted

Procedure: Filling Mold

- Use a scoop to place concrete in the mold.
- Move the scoop around the mold opening so material is evenly distributed and segregation is minimized.
- Fill the mold in three layers of approximately equal volume.
 - fill the mold to 70 mm, 160 mm, and then 300 mm from the base

Procedure: Rodding Concrete

- ▶ Rod each layer 25 times.
 - uniformly distribute the rodding strokes over the cross section of a layer
 - rod the bottom layer through its depth
 - rod each upper layer through its depth and into the layer below approximately 25 mm

Procedure: Rodding Concrete

- While rodding the bottom layer,
 - slightly incline the rod
 - rod around the mold perimeter using about half of the 25 strokes
 - conclude with vertical strokes near the center of the mold
- For the top layer,
 - heap concrete above the mold prior to rodding
 - add concrete as necessary to keep an excess above the top of the mold at all times

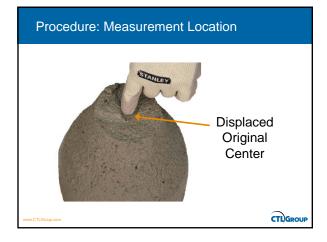
Procedure: Strike-off Concrete

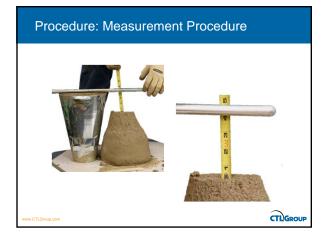
Strike-off the mold with the tamping rod in a screeding and rolling motion.

Procedure: Raising the Mold

- Holding the mold down firmly, clear away any concrete from the area surrounding the base.
 - · prevent interference with the slumping concrete
- Remove the mold immediately after clearing the base of concrete.
- Raise the mold vertically in 5 ± 2 seconds.
- there should be no lateral or torsional (twisting) motion

Procedure: Timing Requirements


Complete the entire test without interruption, from the start of filling to removal of the mold, within 2½ minutes.


Procedure: Measuring Slump

- When measuring the slump,
 - · measure immediately after removing the mold
 - measure the vertical difference between the top of the mold and the displaced original center
 - if a falling away or shearing occurs, disregard the test and make a new test using another portion of the sample

To measure slump, it is convenient to invert the mold and place it next to the slumped concrete.

Report

Slump is reported to the nearest 5 mm.

CTLGROUP

Limitations and Errors

- Slump test is suitable for slumps of medium workability, slump in the range of 15 – 230 mm.
- Test fails to determine the difference in workability in stiff mixes which have zero slump, or for wet mixes that give a collapse slump.
- Limited to concrete formed of aggregates of less than 37.5 mm
- Lacks to tell you anything about water content, w/c, w/cm, strength, air, shrinkage, pump-ability, response to the vibrator and slip forms, and finishability.
- User dependent.
- Very sensitive to time from mixing and time in cone.

.CTLGroup.com

Factors Affecting Slump

- Content, proportions, chemistry, fineness, particle size distribution, moisture content and temperature of certification;
- Content, proportions, size, ten in , embined gradit exchantiness and moisture content of heraour gates;
- Dosage, type, communition, interaction, servence of addition, effectiveness of chemical adminimes.
- 4. Air content;
- 5. Batching, Trixing at d delivery methoder
- 6. Temperature of the concrete
- 7. Sampling, slump-tiesing a children and the condition of test equipment;
- 8. The amount of free water in the concrete; and
- Time since batching at the time of testing.

